Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5
Mutltipliziere mit .
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.7
Addiere und .
Schritt 3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.9
Kombiniere Brüche.
Schritt 3.9.1
Mutltipliziere mit .
Schritt 3.9.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Wende das Distributivgesetz an.
Schritt 4.3
Vereinfache den Zähler.
Schritt 4.3.1
Vereinfache jeden Term.
Schritt 4.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.3.1.2.1
Bewege .
Schritt 4.3.1.2.2
Mutltipliziere mit .
Schritt 4.3.1.3
Bringe auf die linke Seite von .
Schritt 4.3.1.4
Mutltipliziere mit .
Schritt 4.3.1.5
Mutltipliziere mit .
Schritt 4.3.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 4.3.2.1
Addiere und .
Schritt 4.3.2.2
Addiere und .
Schritt 4.3.3
Subtrahiere von .