Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Mutltipliziere mit .
Schritt 2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.6
Vereinfache den Ausdruck.
Schritt 2.6.1
Addiere und .
Schritt 2.6.2
Bringe auf die linke Seite von .
Schritt 2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.10
Mutltipliziere mit .
Schritt 2.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.12
Vereinfache den Ausdruck.
Schritt 2.12.1
Addiere und .
Schritt 2.12.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Vereinfache den Zähler.
Schritt 3.3.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.3.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 3.3.1.2
Subtrahiere von .
Schritt 3.3.1.3
Addiere und .
Schritt 3.3.2
Vereinfache jeden Term.
Schritt 3.3.2.1
Mutltipliziere mit .
Schritt 3.3.2.2
Mutltipliziere mit .
Schritt 3.3.3
Addiere und .
Schritt 3.4
Vereinfache den Nenner.
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Faktorisiere aus heraus.
Schritt 3.4.1.3
Faktorisiere aus heraus.
Schritt 3.4.2
Wende die Produktregel auf an.
Schritt 3.4.3
Potenziere mit .
Schritt 3.5
Kürze den gemeinsamen Teiler von und .
Schritt 3.5.1
Faktorisiere aus heraus.
Schritt 3.5.2
Kürze die gemeinsamen Faktoren.
Schritt 3.5.2.1
Faktorisiere aus heraus.
Schritt 3.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.3
Forme den Ausdruck um.