Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.4
Vereinfache den Ausdruck.
Schritt 1.3.4.1
Addiere und .
Schritt 1.3.4.2
Mutltipliziere mit .
Schritt 1.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.6
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.1.1
Faktorisiere aus heraus.
Schritt 1.4.1.2
Faktorisiere aus heraus.
Schritt 1.4.1.3
Faktorisiere aus heraus.
Schritt 1.4.2
Vereine die Terme
Schritt 1.4.2.1
Bringe auf die linke Seite von .
Schritt 1.4.2.2
Addiere und .
Schritt 1.4.3
Schreibe als um.
Schritt 1.4.4
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.4.4.1
Wende das Distributivgesetz an.
Schritt 1.4.4.2
Wende das Distributivgesetz an.
Schritt 1.4.4.3
Wende das Distributivgesetz an.
Schritt 1.4.5
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.4.5.1
Vereinfache jeden Term.
Schritt 1.4.5.1.1
Mutltipliziere mit .
Schritt 1.4.5.1.2
Bringe auf die linke Seite von .
Schritt 1.4.5.1.3
Mutltipliziere mit .
Schritt 1.4.5.2
Subtrahiere von .
Schritt 1.4.6
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 1.4.7
Vereinfache jeden Term.
Schritt 1.4.7.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.4.7.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.4.7.2.1
Bewege .
Schritt 1.4.7.2.2
Mutltipliziere mit .
Schritt 1.4.7.2.2.1
Potenziere mit .
Schritt 1.4.7.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.7.2.3
Addiere und .
Schritt 1.4.7.3
Bringe auf die linke Seite von .
Schritt 1.4.7.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.4.7.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.4.7.5.1
Bewege .
Schritt 1.4.7.5.2
Mutltipliziere mit .
Schritt 1.4.7.6
Mutltipliziere mit .
Schritt 1.4.7.7
Mutltipliziere mit .
Schritt 1.4.7.8
Mutltipliziere mit .
Schritt 1.4.7.9
Mutltipliziere mit .
Schritt 1.4.8
Subtrahiere von .
Schritt 1.4.9
Addiere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Berechne .
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.3
Mutltipliziere mit .
Schritt 2.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5.2
Addiere und .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 3.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4.2
Addiere und .
Schritt 4
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Berechne .
Schritt 4.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.3
Mutltipliziere mit .
Schritt 4.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 4.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.3.2
Addiere und .