Analysis Beispiele

Berechne das Integral Integral von 0 bis 1 über (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.3.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.1.3.1.3
Ersetze alle durch .
Schritt 1.1.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.4
Mutltipliziere mit .
Schritt 1.1.3.5
Bringe auf die linke Seite von .
Schritt 1.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.4.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.1.4.1.3
Ersetze alle durch .
Schritt 1.1.4.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.4
Mutltipliziere mit .
Schritt 1.1.4.5
Bringe auf die linke Seite von .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Mutltipliziere mit .
Schritt 1.3.1.2
Alles, was mit potenziert wird, ist .
Schritt 1.3.1.3
Mutltipliziere mit .
Schritt 1.3.1.4
Alles, was mit potenziert wird, ist .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Mutltipliziere mit .
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.5.3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Mutltipliziere mit .
Schritt 2.2
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Berechne bei und .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 6.2
Kombiniere und .
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 7.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.1.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.1.4.2
Addiere und .
Schritt 7.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.4
Mutltipliziere mit .
Schritt 7.5
Bringe auf die linke Seite von .
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 9