Analysis Beispiele

Berechne das Integral Integral von 0 bis pi über cos(x)^2 nach x
Schritt 1
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Wende die Konstantenregel an.
Schritt 5
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.2
Setze die untere Grenze für in ein.
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Setze die obere Grenze für in ein.
Schritt 5.5
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 5.6
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 6
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Das Integral von nach ist .
Schritt 9
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Berechne bei und .
Schritt 9.2
Berechne bei und .
Schritt 9.3
Addiere und .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Der genau Wert von ist .
Schritt 10.2
Mutltipliziere mit .
Schritt 10.3
Addiere und .
Schritt 10.4
Kombiniere und .
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 11.1.1.2
Der genau Wert von ist .
Schritt 11.1.2
Dividiere durch .
Schritt 11.2
Addiere und .
Schritt 11.3
Kombiniere und .
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: