Analysis Beispiele

Berechne das Integral Integral über arctan(x) nach x
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Kombiniere und .
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Bringe auf die linke Seite von .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Das Integral von nach ist .
Schritt 7
Vereinfache.
Schritt 8
Ersetze alle durch .