Analysis Beispiele

Berechne das Integral Integral von 1 bis 2 über xsin(x^2) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Potenziere mit .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Berechne bei und .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Berechne .
Schritt 6.1.2
Mutltipliziere mit .
Schritt 6.1.3
Berechne .
Schritt 6.2
Addiere und .
Schritt 6.3
Kombiniere und .
Schritt 6.4
Dividiere durch .