Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Differenziere.
Schritt 1.1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Mutltipliziere mit .
Schritt 1.1.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.4.2
Addiere und .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 1.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.2.1.2
Faktorisiere aus heraus.
Schritt 1.2.2.1.3
Faktorisiere aus heraus.
Schritt 1.2.2.1.4
Faktorisiere aus heraus.
Schritt 1.2.2.1.5
Faktorisiere aus heraus.
Schritt 1.2.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 1.2.2.2.1
Schreibe als um.
Schritt 1.2.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 1.2.2.2.3
Schreibe das Polynom neu.
Schritt 1.2.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 1.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.4
Setze gleich .
Schritt 1.2.5
Setze gleich und löse nach auf.
Schritt 1.2.5.1
Setze gleich .
Schritt 1.2.5.2
Löse nach auf.
Schritt 1.2.5.2.1
Setze gleich .
Schritt 1.2.5.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.3
Mutltipliziere mit .
Schritt 1.4.1.2.1.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.5
Mutltipliziere mit .
Schritt 1.4.1.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 1.4.1.2.2.1
Addiere und .
Schritt 1.4.1.2.2.2
Addiere und .
Schritt 1.4.1.2.2.3
Addiere und .
Schritt 1.4.2
Berechne bei .
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Schritt 1.4.2.2.1
Vereinfache jeden Term.
Schritt 1.4.2.2.1.1
Potenziere mit .
Schritt 1.4.2.2.1.2
Potenziere mit .
Schritt 1.4.2.2.1.3
Mutltipliziere mit .
Schritt 1.4.2.2.1.4
Potenziere mit .
Schritt 1.4.2.2.1.5
Mutltipliziere mit .
Schritt 1.4.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 1.4.2.2.2.1
Subtrahiere von .
Schritt 1.4.2.2.2.2
Addiere und .
Schritt 1.4.2.2.2.3
Addiere und .
Schritt 1.4.3
Liste all Punkte auf.
Schritt 2
Schritt 2.1
Berechne bei .
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Schritt 2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1
Potenziere mit .
Schritt 2.1.2.1.2
Potenziere mit .
Schritt 2.1.2.1.3
Mutltipliziere mit .
Schritt 2.1.2.1.4
Potenziere mit .
Schritt 2.1.2.1.5
Mutltipliziere mit .
Schritt 2.1.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 2.1.2.2.1
Subtrahiere von .
Schritt 2.1.2.2.2
Addiere und .
Schritt 2.1.2.2.3
Addiere und .
Schritt 2.2
Berechne bei .
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Vereinfache jeden Term.
Schritt 2.2.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.2.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.2.2.1.3
Mutltipliziere mit .
Schritt 2.2.2.1.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.2.2.1.5
Mutltipliziere mit .
Schritt 2.2.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 2.2.2.2.1
Addiere und .
Schritt 2.2.2.2.2
Addiere und .
Schritt 2.2.2.2.3
Addiere und .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4