Gib eine Aufgabe ein ...
Analysis Beispiele
on ,
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Mutltipliziere mit .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Faktorisiere aus heraus.
Schritt 1.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.2.2
Faktorisiere aus heraus.
Schritt 1.2.2.3
Faktorisiere aus heraus.
Schritt 1.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.4
Setze gleich und löse nach auf.
Schritt 1.2.4.1
Setze gleich .
Schritt 1.2.4.2
Löse nach auf.
Schritt 1.2.4.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.4.2.2
Vereinfache .
Schritt 1.2.4.2.2.1
Schreibe als um.
Schritt 1.2.4.2.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 1.2.5
Setze gleich und löse nach auf.
Schritt 1.2.5.1
Setze gleich .
Schritt 1.2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.2
Mutltipliziere mit .
Schritt 1.4.1.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.4
Mutltipliziere mit .
Schritt 1.4.1.2.2
Addiere und .
Schritt 1.4.2
Berechne bei .
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Schritt 1.4.2.2.1
Vereinfache jeden Term.
Schritt 1.4.2.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.4.2.2.1.1.1
Mutltipliziere mit .
Schritt 1.4.2.2.1.1.1.1
Potenziere mit .
Schritt 1.4.2.2.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.2.2.1.1.2
Addiere und .
Schritt 1.4.2.2.1.2
Potenziere mit .
Schritt 1.4.2.2.1.3
Potenziere mit .
Schritt 1.4.2.2.1.4
Mutltipliziere mit .
Schritt 1.4.2.2.2
Subtrahiere von .
Schritt 1.4.3
Liste all Punkte auf.
Schritt 2
Schritt 2.1
Berechne bei .
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Schritt 2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1
Potenziere mit .
Schritt 2.1.2.1.2
Mutltipliziere mit .
Schritt 2.1.2.1.3
Potenziere mit .
Schritt 2.1.2.1.4
Mutltipliziere mit .
Schritt 2.1.2.2
Subtrahiere von .
Schritt 2.2
Berechne bei .
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Vereinfache jeden Term.
Schritt 2.2.2.1.1
Potenziere mit .
Schritt 2.2.2.1.2
Mutltipliziere mit .
Schritt 2.2.2.1.3
Potenziere mit .
Schritt 2.2.2.1.4
Mutltipliziere mit .
Schritt 2.2.2.2
Subtrahiere von .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4