Analysis Beispiele

Finde das absolute Maximum und Minimum im Intervall f(x)=sin(x/2) , [pi/2,(3pi)/2]
,
Schritt 1
Ermittle die kritischen Punkte.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.1.2
Die Ableitung von nach ist .
Schritt 1.1.1.1.3
Ersetze alle durch .
Schritt 1.1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Kombiniere und .
Schritt 1.1.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.4
Mutltipliziere mit .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Setze den Zähler gleich Null.
Schritt 1.2.3
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 1.2.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Der genau Wert von ist .
Schritt 1.2.3.3
Da der Ausdruck auf jeder Seite der Gleichung den gleichen Nenner hat, müssen die Zähler gleich sein.
Schritt 1.2.3.4
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 1.2.3.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.5.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 1.2.3.5.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.5.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.5.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.5.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.5.2.1.1.2
Forme den Ausdruck um.
Schritt 1.2.3.5.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.5.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.5.2.2.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.3.5.2.2.1.2
Kombiniere und .
Schritt 1.2.3.5.2.2.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.3.5.2.2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.5.2.2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.5.2.2.1.4.2
Forme den Ausdruck um.
Schritt 1.2.3.5.2.2.1.5
Mutltipliziere mit .
Schritt 1.2.3.5.2.2.1.6
Subtrahiere von .
Schritt 1.2.3.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.3.6.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.3.6.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 1.2.3.6.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.3.6.5
Mutltipliziere mit .
Schritt 1.2.3.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.2.4
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Der genau Wert von ist .
Schritt 1.4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.2.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 1.4.2.2.2
Der genau Wert von ist .
Schritt 1.4.2.2.3
Mutltipliziere mit .
Schritt 1.4.3
Liste all Punkte auf.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 2
Schließe die Punkte aus, die nicht im Intervall liegen.
Schritt 3
Werte die enthaltenen Endpunkte aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Ersetze durch .
Schritt 3.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.1.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.2.1
Mutltipliziere mit .
Schritt 3.1.2.2.2
Mutltipliziere mit .
Schritt 3.1.2.3
Der genau Wert von ist .
Schritt 3.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Ersetze durch .
Schritt 3.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.2.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.2.1
Mutltipliziere mit .
Schritt 3.2.2.2.2
Mutltipliziere mit .
Schritt 3.2.2.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 3.2.2.4
Der genau Wert von ist .
Schritt 3.3
Liste all Punkte auf.
Schritt 4
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 5