Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Kombiniere und .
Schritt 1.1.1.2.4
Kombiniere und .
Schritt 1.1.1.2.5
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.1.2.5.1
Faktorisiere aus heraus.
Schritt 1.1.1.2.5.2
Kürze die gemeinsamen Faktoren.
Schritt 1.1.1.2.5.2.1
Faktorisiere aus heraus.
Schritt 1.1.1.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.2.5.2.3
Forme den Ausdruck um.
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Mutltipliziere mit .
Schritt 1.1.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.4.2
Addiere und .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.3
Multipliziere beide Seiten der Gleichung mit .
Schritt 1.2.4
Vereinfache beide Seiten der Gleichung.
Schritt 1.2.4.1
Vereinfache die linke Seite.
Schritt 1.2.4.1.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.1.1.2
Forme den Ausdruck um.
Schritt 1.2.4.2
Vereinfache die rechte Seite.
Schritt 1.2.4.2.1
Mutltipliziere mit .
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
Potenziere mit .
Schritt 1.4.1.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.4.1.2.1.2.1
Faktorisiere aus heraus.
Schritt 1.4.1.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.1.2.1.2.3
Forme den Ausdruck um.
Schritt 1.4.1.2.1.3
Mutltipliziere mit .
Schritt 1.4.1.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 1.4.1.2.2.1
Subtrahiere von .
Schritt 1.4.1.2.2.2
Addiere und .
Schritt 1.4.2
Liste all Punkte auf.
Schritt 2
Schritt 2.1
Berechne bei .
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Schritt 2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.2.1.2
Mutltipliziere mit .
Schritt 2.1.2.1.3
Mutltipliziere mit .
Schritt 2.1.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 2.1.2.2.1
Addiere und .
Schritt 2.1.2.2.2
Addiere und .
Schritt 2.2
Berechne bei .
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Vereinfache jeden Term.
Schritt 2.2.2.1.1
Potenziere mit .
Schritt 2.2.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2.3
Forme den Ausdruck um.
Schritt 2.2.2.1.3
Mutltipliziere mit .
Schritt 2.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 2.2.2.2.1
Subtrahiere von .
Schritt 2.2.2.2.2
Addiere und .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4