Gib eine Aufgabe ein ...
Analysis Beispiele
;
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Differenziere unter Anwendung der Faktorregel.
Schritt 1.1.1.1.1
Benutze , um als neu zu schreiben.
Schritt 1.1.1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Ersetze alle durch .
Schritt 1.1.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.1.4
Kombiniere und .
Schritt 1.1.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.1.6
Vereinfache den Zähler.
Schritt 1.1.1.6.1
Mutltipliziere mit .
Schritt 1.1.1.6.2
Subtrahiere von .
Schritt 1.1.1.7
Kombiniere Brüche.
Schritt 1.1.1.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.1.7.2
Kombiniere und .
Schritt 1.1.1.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.1.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.11
Vereinfache den Ausdruck.
Schritt 1.1.1.11.1
Addiere und .
Schritt 1.1.1.11.2
Mutltipliziere mit .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Setze den Zähler gleich Null.
Schritt 1.2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Schritt 1.3.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 1.3.1.2
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 1.3.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.3.3
Löse nach auf.
Schritt 1.3.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 1.3.3.2
Vereinfache jede Seite der Gleichung.
Schritt 1.3.3.2.1
Benutze , um als neu zu schreiben.
Schritt 1.3.3.2.2
Vereinfache die linke Seite.
Schritt 1.3.3.2.2.1
Vereinfache .
Schritt 1.3.3.2.2.1.1
Wende die Produktregel auf an.
Schritt 1.3.3.2.2.1.2
Potenziere mit .
Schritt 1.3.3.2.2.1.3
Multipliziere die Exponenten in .
Schritt 1.3.3.2.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.3.2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.3.3.2.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.2.2.1.3.2.2
Forme den Ausdruck um.
Schritt 1.3.3.2.2.1.4
Vereinfache.
Schritt 1.3.3.2.2.1.5
Wende das Distributivgesetz an.
Schritt 1.3.3.2.2.1.6
Mutltipliziere mit .
Schritt 1.3.3.2.3
Vereinfache die rechte Seite.
Schritt 1.3.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.3.3
Löse nach auf.
Schritt 1.3.3.3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.3.3.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.3.3.3.2.1
Teile jeden Ausdruck in durch .
Schritt 1.3.3.3.2.2
Vereinfache die linke Seite.
Schritt 1.3.3.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.3.3.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.3.2.2.1.2
Dividiere durch .
Schritt 1.3.3.3.2.3
Vereinfache die rechte Seite.
Schritt 1.3.3.3.2.3.1
Dividiere durch .
Schritt 1.3.4
Setze den Radikanden in kleiner als , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.3.5
Addiere auf beiden Seiten der Ungleichung.
Schritt 1.3.6
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Subtrahiere von .
Schritt 1.4.1.2.2
Schreibe als um.
Schritt 1.4.1.2.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.4.1.2.4
Mutltipliziere mit .
Schritt 1.4.2
Liste all Punkte auf.
Schritt 2
Schließe die Punkte aus, die nicht im Intervall liegen.
Schritt 3
Schritt 3.1
Berechne bei .
Schritt 3.1.1
Ersetze durch .
Schritt 3.1.2
Vereinfache.
Schritt 3.1.2.1
Subtrahiere von .
Schritt 3.1.2.2
Jede Wurzel von ist .
Schritt 3.1.2.3
Mutltipliziere mit .
Schritt 3.2
Berechne bei .
Schritt 3.2.1
Ersetze durch .
Schritt 3.2.2
Vereinfache.
Schritt 3.2.2.1
Subtrahiere von .
Schritt 3.2.2.2
Schreibe als um.
Schritt 3.2.2.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.2.2.4
Mutltipliziere mit .
Schritt 3.3
Liste all Punkte auf.
Schritt 4
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 5