Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3
Differenziere.
Schritt 1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.4
Vereinfache den Ausdruck.
Schritt 1.3.4.1
Addiere und .
Schritt 1.3.4.2
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Wende das Distributivgesetz an.
Schritt 1.4.2
Subtrahiere von .
Schritt 1.4.3
Stelle die Terme um.
Schritt 1.4.4
Faktorisiere aus heraus.
Schritt 1.4.4.1
Faktorisiere aus heraus.
Schritt 1.4.4.2
Faktorisiere aus heraus.
Schritt 1.4.4.3
Faktorisiere aus heraus.
Schritt 1.5
Bestimme die Ableitung bei .
Schritt 1.6
Vereinfache.
Schritt 1.6.1
Vereinfache den Zähler.
Schritt 1.6.1.1
Addiere und .
Schritt 1.6.1.2
Alles, was mit potenziert wird, ist .
Schritt 1.6.1.3
Mutltipliziere mit .
Schritt 1.6.2
Vereinfache den Nenner.
Schritt 1.6.2.1
Addiere und .
Schritt 1.6.2.2
Potenziere mit .
Schritt 2
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Schritt 2.3.1
Vereinfache .
Schritt 2.3.1.1
Addiere und .
Schritt 2.3.1.2
Kombiniere und .
Schritt 2.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.3
Stelle die Terme um.
Schritt 3