Gib eine Aufgabe ein ...
Analysis Beispiele
at
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Schreibe als um.
Schritt 1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Mutltipliziere mit .
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.5.2
Vereine die Terme
Schritt 1.5.2.1
Kombiniere und .
Schritt 1.5.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6
Bestimme die Ableitung bei .
Schritt 1.7
Potenziere mit .
Schritt 2
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Schritt 2.3.1
Vereinfache .
Schritt 2.3.1.1
Forme um.
Schritt 2.3.1.2
Vereinfache Terme.
Schritt 2.3.1.2.1
Wende das Distributivgesetz an.
Schritt 2.3.1.2.2
Kombiniere und .
Schritt 2.3.1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.2.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.1.2.3.2
Faktorisiere aus heraus.
Schritt 2.3.1.2.3.3
Faktorisiere aus heraus.
Schritt 2.3.1.2.3.4
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2.3.5
Forme den Ausdruck um.
Schritt 2.3.1.2.4
Kombiniere und .
Schritt 2.3.1.2.5
Mutltipliziere mit .
Schritt 2.3.1.3
Bringe auf die linke Seite von .
Schritt 2.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.2.3
Addiere und .
Schritt 2.3.2.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.3
Schreibe in -Form.
Schritt 2.3.3.1
Stelle die Terme um.
Schritt 2.3.3.2
Entferne die Klammern.
Schritt 3