Analysis Beispiele

(32,8)에서의 접선 구하기 y = square root of 2x at (32,8)
at
Schritt 1
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache durch Herausfaktorisieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Benutze , um als neu zu schreiben.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Wende die Produktregel auf an.
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.5
Kombiniere und .
Schritt 1.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Mutltipliziere mit .
Schritt 1.7.2
Subtrahiere von .
Schritt 1.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.9
Kombiniere und .
Schritt 1.10
Kombiniere und .
Schritt 1.11
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.11.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.12
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.12.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.12.1.1
Potenziere mit .
Schritt 1.12.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.12.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.12.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.12.4
Subtrahiere von .
Schritt 1.13
Bestimme die Ableitung bei .
Schritt 1.14
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.14.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.14.1.1
Schreibe als um.
Schritt 1.14.1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.14.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.14.1.2.2
Kombiniere und .
Schritt 1.14.1.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.14.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.14.1.5
Addiere und .
Schritt 1.14.1.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.14.1.6.1
Faktorisiere aus heraus.
Schritt 1.14.1.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.14.1.6.2.1
Faktorisiere aus heraus.
Schritt 1.14.1.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.14.1.6.2.3
Forme den Ausdruck um.
Schritt 1.14.1.6.2.4
Dividiere durch .
Schritt 1.14.2
Potenziere mit .
Schritt 2
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Forme um.
Schritt 2.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 2.3.1.3
Wende das Distributivgesetz an.
Schritt 2.3.1.4
Kombiniere und .
Schritt 2.3.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.5.1
Faktorisiere aus heraus.
Schritt 2.3.1.5.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.5.3
Forme den Ausdruck um.
Schritt 2.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.2.2
Addiere und .
Schritt 2.3.3
Stelle die Terme um.
Schritt 3