Analysis Beispiele

x=π에서의 접선 구하기 y=tan(x) ; x=pi
;
Schritt 1
Bestimme den entsprechenden -Wert zu .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze für ein.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Entferne die Klammern.
Schritt 1.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Tangens im zweiten Quadranten negativ ist.
Schritt 1.2.2.2
Der genau Wert von ist .
Schritt 1.2.2.3
Mutltipliziere mit .
Schritt 2
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Die Ableitung von nach ist .
Schritt 2.2
Bestimme die Ableitung bei .
Schritt 2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sekans im zweiten Quadranten negativ ist.
Schritt 2.3.2
Der genau Wert von ist .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.3.4
Potenziere mit .
Schritt 3
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 3.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Addiere und .
Schritt 3.3.2
Mutltipliziere mit .
Schritt 4