Analysis Beispiele

Integriere mittels Subtitution Integral über natürlicher Logarithmus von ( Quadratwurzel von 1-x)/(x+1) nach x
Schritt 1
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5
Addiere und .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kombiniere und .
Schritt 3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2
Forme den Ausdruck um.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Mutltipliziere mit .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Dividiere durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
--
Schritt 7.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
--
Schritt 7.3
Multipliziere den neuen Bruchterm mit dem Teiler.
--
+-
Schritt 7.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
--
-+
Schritt 7.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
--
-+
-
Schritt 7.6
Die endgültige Lösung ist der Quotient plus dem Rest geteilt durch den Divisor.
Schritt 8
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 9
Wende die Konstantenregel an.
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12
Mutltipliziere mit .
Schritt 13
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1.1
Differenziere .
Schritt 13.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 13.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 13.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 13.1.5
Addiere und .
Schritt 13.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 14
Das Integral von nach ist .
Schritt 15
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Vereinfache.
Schritt 15.2
Schreibe als um.
Schritt 15.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 15.3.2
Kombiniere und .
Schritt 15.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 15.3.4
Bringe auf die linke Seite von .
Schritt 16
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Ersetze alle durch .
Schritt 16.2
Ersetze alle durch .
Schritt 16.3
Ersetze alle durch .
Schritt 17
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 17.1
Wende das Distributivgesetz an.
Schritt 17.2
Mutltipliziere mit .
Schritt 17.3
Addiere und .
Schritt 17.4
Subtrahiere von .
Schritt 18
Stelle die Terme um.