Analysis Beispiele

Integriere mittels Subtitution Integral von pi/4 bis pi/3 über cos(x)sin(x) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Der genau Wert von ist .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Der genau Wert von ist .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Berechne bei und .
Schritt 5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2
Addiere und .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: