Analysis Beispiele

Integriere mittels Subtitution Integral über (x^3)/( Kubikwurzel von x^2+1) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5
Addiere und .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Benutze , um als neu zu schreiben.
Schritt 2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.3
Kombiniere und .
Schritt 2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.4.2
Forme den Ausdruck um.
Schritt 2.1.5
Vereinfache.
Schritt 2.2
Mutltipliziere mit .
Schritt 2.3
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Benutze , um als neu zu schreiben.
Schritt 4.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 4.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2
Kombiniere und .
Schritt 4.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Multipliziere aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Potenziere mit .
Schritt 5.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.4
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.6
Subtrahiere von .
Schritt 6
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Vereinfache.
Schritt 11
Ersetze alle durch .
Schritt 12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Kombiniere und .
Schritt 12.1.2
Kombiniere und .
Schritt 12.1.3
Bringe auf die linke Seite von .
Schritt 12.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 12.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 12.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.4.1
Mutltipliziere mit .
Schritt 12.4.2
Mutltipliziere mit .
Schritt 12.4.3
Mutltipliziere mit .
Schritt 12.4.4
Mutltipliziere mit .
Schritt 12.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 12.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.6.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.6.1.1
Stelle den Ausdruck um.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.6.1.1.1
Bewege .
Schritt 12.6.1.1.2
Bewege .
Schritt 12.6.1.2
Faktorisiere aus heraus.
Schritt 12.6.1.3
Faktorisiere aus heraus.
Schritt 12.6.1.4
Faktorisiere aus heraus.
Schritt 12.6.2
Mutltipliziere mit .
Schritt 12.6.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.6.3.1
Dividiere durch .
Schritt 12.6.3.2
Vereinfache.
Schritt 12.6.3.3
Wende das Distributivgesetz an.
Schritt 12.6.3.4
Mutltipliziere mit .
Schritt 12.6.4
Subtrahiere von .
Schritt 12.7
Kombinieren.
Schritt 12.8
Mutltipliziere mit .
Schritt 12.9
Mutltipliziere mit .