Analysis Beispiele

Integriere mittels Subtitution Integral über (x^2+2)(x+1)^42 nach x
Schritt 1
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5
Addiere und .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Multipliziere aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Wende das Distributivgesetz an.
Schritt 2.3
Wende das Distributivgesetz an.
Schritt 2.4
Wende das Distributivgesetz an.
Schritt 2.5
Wende das Distributivgesetz an.
Schritt 2.6
Wende das Distributivgesetz an.
Schritt 2.7
Wende das Distributivgesetz an.
Schritt 2.8
Wende das Distributivgesetz an.
Schritt 2.9
Stelle und um.
Schritt 2.10
Potenziere mit .
Schritt 2.11
Potenziere mit .
Schritt 2.12
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.13
Addiere und .
Schritt 2.14
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.15
Addiere und .
Schritt 2.16
Faktorisiere das negative Vorzeichen heraus.
Schritt 2.17
Potenziere mit .
Schritt 2.18
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.19
Addiere und .
Schritt 2.20
Faktorisiere das negative Vorzeichen heraus.
Schritt 2.21
Potenziere mit .
Schritt 2.22
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.23
Addiere und .
Schritt 2.24
Mutltipliziere mit .
Schritt 2.25
Mutltipliziere mit .
Schritt 2.26
Subtrahiere von .
Schritt 2.27
Addiere und .
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Vereinfache.
Schritt 10
Stelle die Terme um.
Schritt 11
Kombiniere und .
Schritt 12
Ersetze alle durch .