Analysis Beispiele

Integriere mittels Subtitution Integral über 5x Quadratwurzel von 2x+3 nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.2
Addiere und .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Kombiniere und .
Schritt 2.1.2
Kombiniere und .
Schritt 2.1.3
Bringe auf die linke Seite von .
Schritt 2.2
Benutze , um als neu zu schreiben.
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Stelle und um.
Schritt 3.3
Mutltipliziere mit .
Schritt 3.4
Potenziere mit .
Schritt 3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.6
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 3.7
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.8
Addiere und .
Schritt 3.9
Mutltipliziere mit .
Schritt 3.10
Kombiniere und .
Schritt 3.11
Kombiniere und .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Schreibe als um.
Schritt 4.3
Schreibe als ein Produkt um.
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Mutltipliziere mit .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Vereinfache.
Schritt 11.2
Schreibe als um.
Schritt 11.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Mutltipliziere mit .
Schritt 11.3.2
Mutltipliziere mit .
Schritt 11.3.3
Mutltipliziere mit .
Schritt 11.3.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.4.1
Faktorisiere aus heraus.
Schritt 11.3.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.4.2.1
Faktorisiere aus heraus.
Schritt 11.3.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 11.3.4.2.3
Forme den Ausdruck um.
Schritt 12
Ersetze alle durch .