Analysis Beispiele

Integriere mittels Subtitution Integral über x^2e^(2x) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Mutltipliziere mit .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Kombiniere und .
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Mutltipliziere mit .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kombiniere und .
Schritt 7.2
Kombiniere und .
Schritt 7.3
Bringe auf die linke Seite von .
Schritt 7.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.4.2
Dividiere durch .
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Kombiniere und .
Schritt 9.2
Schreibe als um.
Schritt 10
Entferne die Klammern.
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Kombiniere und .
Schritt 11.2
Kombiniere und .
Schritt 11.3
Kombiniere und .
Schritt 11.4
Kombiniere und .
Schritt 11.5
Subtrahiere von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.5.1
Stelle und um.
Schritt 11.5.2
Subtrahiere von .
Schritt 11.6
Addiere und .