Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Der natürliche Logarithmus von ist .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 1.5.2
Der natürliche Logarithmus von ist .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.3
Multipliziere die Exponenten in .
Schritt 2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Schritt 4.1
Berechne bei und .
Schritt 4.2
Vereinfache.
Schritt 4.2.1
Schreibe als um.
Schritt 4.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.3
Kürze den gemeinsamen Faktor von .
Schritt 4.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.2
Forme den Ausdruck um.
Schritt 4.2.4
Berechne den Exponenten.
Schritt 4.3
Vereinfache den Ausdruck.
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.3
Mutltipliziere mit .
Schritt 4.3.4
Subtrahiere von .