Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.5
Addiere und .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Benutze , um als neu zu schreiben.
Schritt 3
Schritt 3.1
Es sei . Ermittle .
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Schritt 4.1
Es sei . Ermittle .
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.5
Addiere und .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Schritt 5.1
Schreibe als um.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Wende das Distributivgesetz an.
Schritt 5.4
Wende das Distributivgesetz an.
Schritt 5.5
Wende das Distributivgesetz an.
Schritt 5.6
Wende das Distributivgesetz an.
Schritt 5.7
Wende das Distributivgesetz an.
Schritt 5.8
Stelle und um.
Schritt 5.9
Potenziere mit .
Schritt 5.10
Potenziere mit .
Schritt 5.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.12
Addiere und .
Schritt 5.13
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.14
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.15
Kombiniere und .
Schritt 5.16
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.17
Vereinfache den Zähler.
Schritt 5.17.1
Mutltipliziere mit .
Schritt 5.17.2
Addiere und .
Schritt 5.18
Potenziere mit .
Schritt 5.19
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.20
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.21
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.22
Addiere und .
Schritt 5.23
Potenziere mit .
Schritt 5.24
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.25
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.26
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.27
Addiere und .
Schritt 5.28
Mutltipliziere mit .
Schritt 5.29
Subtrahiere von .
Schritt 5.30
Stelle und um.
Schritt 5.31
Stelle und um.
Schritt 6
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Kombiniere und .
Schritt 11
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 13
Schritt 13.1
Kombiniere und .
Schritt 13.2
Vereinfache.
Schritt 14
Stelle die Terme um.
Schritt 15
Schritt 15.1
Kombiniere und .
Schritt 15.2
Mutltipliziere mit .
Schritt 15.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 16
Schritt 16.1
Ersetze alle durch .
Schritt 16.2
Ersetze alle durch .
Schritt 16.3
Ersetze alle durch .