Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.5
Addiere und .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Benutze , um als neu zu schreiben.
Schritt 3
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Potenziere mit .
Schritt 3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Addiere und .
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Vereinfache.
Schritt 9
Ersetze alle durch .