Analysis Beispiele

Integriere mittels Subtitution Integral von 0 bis pi/2 über cos((2x)/3) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Mutltipliziere mit .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Faktorisiere aus heraus.
Schritt 1.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.1.2.3
Forme den Ausdruck um.
Schritt 1.3.1.2.4
Dividiere durch .
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Kombiniere und .
Schritt 1.5.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.2.1.2
Forme den Ausdruck um.
Schritt 1.5.2.2
Dividiere durch .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 2.2
Mutltipliziere mit .
Schritt 2.3
Kombiniere und .
Schritt 2.4
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Berechne bei und .
Schritt 5.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Der genau Wert von ist .
Schritt 5.2.2
Der genau Wert von ist .
Schritt 5.2.3
Mutltipliziere mit .
Schritt 5.2.4
Addiere und .
Schritt 5.2.5
Mutltipliziere mit .
Schritt 5.2.6
Mutltipliziere mit .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: