Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.5
Addiere und .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Benutze , um als neu zu schreiben.
Schritt 3
Schritt 3.1
Es sei . Ermittle .
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Schritt 4.1
Es sei . Ermittle .
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.5
Addiere und .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Schritt 5.1
Schreibe als um.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Wende das Distributivgesetz an.
Schritt 5.4
Wende das Distributivgesetz an.
Schritt 5.5
Wende das Distributivgesetz an.
Schritt 5.6
Wende das Distributivgesetz an.
Schritt 5.7
Wende das Distributivgesetz an.
Schritt 5.8
Stelle und um.
Schritt 5.9
Potenziere mit .
Schritt 5.10
Potenziere mit .
Schritt 5.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.12
Addiere und .
Schritt 5.13
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.14
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.15
Kombiniere und .
Schritt 5.16
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.17
Vereinfache den Zähler.
Schritt 5.17.1
Mutltipliziere mit .
Schritt 5.17.2
Addiere und .
Schritt 5.18
Faktorisiere das negative Vorzeichen heraus.
Schritt 5.19
Potenziere mit .
Schritt 5.20
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.21
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.22
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.23
Addiere und .
Schritt 5.24
Faktorisiere das negative Vorzeichen heraus.
Schritt 5.25
Potenziere mit .
Schritt 5.26
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.27
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.28
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.29
Addiere und .
Schritt 5.30
Mutltipliziere mit .
Schritt 5.31
Mutltipliziere mit .
Schritt 5.32
Subtrahiere von .
Schritt 5.33
Stelle und um.
Schritt 6
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Schritt 11.1
Kombiniere und .
Schritt 11.2
Vereinfache.
Schritt 11.3
Vereinfache.
Schritt 11.3.1
Kombiniere und .
Schritt 11.3.2
Mutltipliziere mit .
Schritt 11.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 12
Schritt 12.1
Ersetze alle durch .
Schritt 12.2
Ersetze alle durch .
Schritt 12.3
Ersetze alle durch .