Analysis Beispiele

Integriere mittels Subtitution Integral über (x+1) Quadratwurzel von 2-x nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Subtrahiere von .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Benutze , um als neu zu schreiben.
Schritt 3
Multipliziere aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Wende das Distributivgesetz an.
Schritt 3.4
Versetze die Klammern.
Schritt 3.5
Mutltipliziere mit .
Schritt 3.6
Mutltipliziere mit .
Schritt 3.7
Potenziere mit .
Schritt 3.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.9
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 3.10
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.11
Addiere und .
Schritt 3.12
Mutltipliziere mit .
Schritt 3.13
Subtrahiere von .
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache.
Schritt 8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kombiniere und .
Schritt 8.2.2
Mutltipliziere mit .
Schritt 8.2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.3.1
Faktorisiere aus heraus.
Schritt 8.2.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.3.2.1
Faktorisiere aus heraus.
Schritt 8.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.3.2.3
Forme den Ausdruck um.
Schritt 8.2.3.2.4
Dividiere durch .
Schritt 9
Ersetze alle durch .