Analysis Beispiele

Integriere mittels Subtitution Integral über x^2 Quadratwurzel von 1-x nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Subtrahiere von .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Benutze , um als neu zu schreiben.
Schritt 4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.4.2
Addiere und .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Mutltipliziere mit .
Schritt 7
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 7.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.3.3
Mutltipliziere mit .
Schritt 7.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 7.1.4.2
Addiere und .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Schreibe als um.
Schritt 9.2
Wende das Distributivgesetz an.
Schritt 9.3
Wende das Distributivgesetz an.
Schritt 9.4
Wende das Distributivgesetz an.
Schritt 9.5
Wende das Distributivgesetz an.
Schritt 9.6
Wende das Distributivgesetz an.
Schritt 9.7
Wende das Distributivgesetz an.
Schritt 9.8
Bewege .
Schritt 9.9
Bewege .
Schritt 9.10
Mutltipliziere mit .
Schritt 9.11
Mutltipliziere mit .
Schritt 9.12
Potenziere mit .
Schritt 9.13
Potenziere mit .
Schritt 9.14
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.15
Addiere und .
Schritt 9.16
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.17
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.18
Kombiniere und .
Schritt 9.19
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.20
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.20.1
Mutltipliziere mit .
Schritt 9.20.2
Addiere und .
Schritt 9.21
Mutltipliziere mit .
Schritt 9.22
Faktorisiere das negative Vorzeichen heraus.
Schritt 9.23
Potenziere mit .
Schritt 9.24
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.25
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 9.26
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.27
Addiere und .
Schritt 9.28
Mutltipliziere mit .
Schritt 9.29
Faktorisiere das negative Vorzeichen heraus.
Schritt 9.30
Potenziere mit .
Schritt 9.31
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.32
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 9.33
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.34
Addiere und .
Schritt 9.35
Mutltipliziere mit .
Schritt 9.36
Mutltipliziere mit .
Schritt 9.37
Subtrahiere von .
Schritt 9.38
Stelle und um.
Schritt 10
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 11
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 12
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 13
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Kombiniere und .
Schritt 13.2
Kombiniere und .
Schritt 14
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 15
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 16
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Kombiniere und .
Schritt 16.2
Vereinfache.
Schritt 17
Stelle die Terme um.
Schritt 18
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 18.1
Ersetze alle durch .
Schritt 18.2
Ersetze alle durch .
Schritt 18.3
Ersetze alle durch .