Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Benutze , um als neu zu schreiben.
Schritt 6.3
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 6.4
Multipliziere die Exponenten in .
Schritt 6.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.4.2
Kombiniere und .
Schritt 6.4.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Schritt 8.1
Schreibe als um.
Schritt 8.2
Mutltipliziere mit .
Schritt 9
Die Lösung ist die Stammfunktion der Funktion .