Analysis Beispiele

Ermittle die Stammfunktion (e^x+1)^2
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Wende das Distributivgesetz an.
Schritt 4.2.2
Wende das Distributivgesetz an.
Schritt 4.2.3
Wende das Distributivgesetz an.
Schritt 4.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.1.1.2
Addiere und .
Schritt 4.3.1.2
Mutltipliziere mit .
Schritt 4.3.1.3
Mutltipliziere mit .
Schritt 4.3.1.4
Mutltipliziere mit .
Schritt 4.3.2
Addiere und .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Das Integral von nach ist .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Das Integral von nach ist .
Schritt 12
Wende die Konstantenregel an.
Schritt 13
Vereinfache.
Schritt 14
Ersetze alle durch .
Schritt 15
Die Lösung ist die Stammfunktion der Funktion .