Analysis Beispiele

Ermittle die Stammfunktion x Logarithmus von x
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kombiniere und .
Schritt 7.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Faktorisiere aus heraus.
Schritt 7.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Faktorisiere aus heraus.
Schritt 7.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.3
Forme den Ausdruck um.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Bringe auf die linke Seite von .
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Schreibe als um.
Schritt 11.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Kombiniere und .
Schritt 11.2.2
Kombiniere und .
Schritt 11.2.3
Mutltipliziere mit .
Schritt 11.2.4
Mutltipliziere mit .
Schritt 11.3
Kombiniere und .
Schritt 11.4
Stelle die Terme um.
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .