Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Berechne .
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Mutltipliziere mit .
Schritt 2.1.2.4
Kombiniere und .
Schritt 2.1.2.5
Kombiniere und .
Schritt 2.1.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.6.1
Faktorisiere aus heraus.
Schritt 2.1.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.6.2.3
Forme den Ausdruck um.
Schritt 2.1.2.6.2.4
Dividiere durch .
Schritt 2.1.3
Berechne .
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.3
Mutltipliziere mit .
Schritt 2.1.4
Berechne .
Schritt 2.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.4.3
Mutltipliziere mit .
Schritt 2.1.4.4
Kombiniere und .
Schritt 2.1.4.5
Mutltipliziere mit .
Schritt 2.1.4.6
Kombiniere und .
Schritt 2.1.4.7
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.4.7.1
Faktorisiere aus heraus.
Schritt 2.1.4.7.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.4.7.2.1
Faktorisiere aus heraus.
Schritt 2.1.4.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.4.7.2.3
Forme den Ausdruck um.
Schritt 2.1.4.7.2.4
Dividiere durch .
Schritt 2.2
Bestimme die zweite Ableitung.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Berechne .
Schritt 2.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.3
Mutltipliziere mit .
Schritt 2.2.3
Berechne .
Schritt 2.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3
Mutltipliziere mit .
Schritt 2.2.4
Berechne .
Schritt 2.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4.3
Mutltipliziere mit .
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Faktorisiere die linke Seite der Gleichung.
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.2
Faktorisiere aus heraus.
Schritt 3.2.1.3
Faktorisiere aus heraus.
Schritt 3.2.1.4
Faktorisiere aus heraus.
Schritt 3.2.1.5
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 3.2.2.1
Schreibe als um.
Schritt 3.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.2.2.3
Schreibe das Polynom neu.
Schritt 3.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Löse nach auf.
Schritt 3.4.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4.2.2
Vereinfache .
Schritt 3.4.2.2.1
Schreibe als um.
Schritt 3.4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.4.2.2.3
Plus oder Minus ist .
Schritt 3.5
Setze gleich und löse nach auf.
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Schritt 3.5.2.1
Setze gleich .
Schritt 3.5.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.2
Multipliziere .
Schritt 4.1.2.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.1.2.2
Mutltipliziere mit .
Schritt 4.1.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.4
Mutltipliziere mit .
Schritt 4.1.2.1.5
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.6
Multipliziere .
Schritt 4.1.2.1.6.1
Mutltipliziere mit .
Schritt 4.1.2.1.6.2
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 4.1.2.2.1
Addiere und .
Schritt 4.1.2.2.2
Addiere und .
Schritt 4.1.2.3
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.3
Ersetze in , um den Wert von zu ermitteln.
Schritt 4.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.3.2
Vereinfache das Ergebnis.
Schritt 4.3.2.1
Vereinfache jeden Term.
Schritt 4.3.2.1.1
Potenziere mit .
Schritt 4.3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 4.3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.3.2.1.2.2
Faktorisiere aus heraus.
Schritt 4.3.2.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.2.4
Forme den Ausdruck um.
Schritt 4.3.2.1.3
Mutltipliziere mit .
Schritt 4.3.2.1.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.3.2.1.4.1
Mutltipliziere mit .
Schritt 4.3.2.1.4.1.1
Potenziere mit .
Schritt 4.3.2.1.4.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.2.1.4.2
Addiere und .
Schritt 4.3.2.1.5
Potenziere mit .
Schritt 4.3.2.1.6
Potenziere mit .
Schritt 4.3.2.1.7
Multipliziere .
Schritt 4.3.2.1.7.1
Mutltipliziere mit .
Schritt 4.3.2.1.7.2
Kombiniere und .
Schritt 4.3.2.1.7.3
Mutltipliziere mit .
Schritt 4.3.2.1.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.2.2
Ermittle den gemeinsamen Nenner.
Schritt 4.3.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.3.2.2.2
Mutltipliziere mit .
Schritt 4.3.2.2.3
Mutltipliziere mit .
Schritt 4.3.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.3.2.2.5
Mutltipliziere mit .
Schritt 4.3.2.2.6
Mutltipliziere mit .
Schritt 4.3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.2.4
Vereinfache jeden Term.
Schritt 4.3.2.4.1
Mutltipliziere mit .
Schritt 4.3.2.4.2
Mutltipliziere mit .
Schritt 4.3.2.5
Vereinfache den Ausdruck.
Schritt 4.3.2.5.1
Addiere und .
Schritt 4.3.2.5.2
Subtrahiere von .
Schritt 4.3.2.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.2.6
Die endgültige Lösung ist .
Schritt 4.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Potenziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.1.5
Potenziere mit .
Schritt 6.2.1.6
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 6.2.2.1
Addiere und .
Schritt 6.2.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 7.2.1.1.1
Wende die Produktregel auf an.
Schritt 7.2.1.1.2
Wende die Produktregel auf an.
Schritt 7.2.1.2
Potenziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.1.4
Potenziere mit .
Schritt 7.2.1.5
Potenziere mit .
Schritt 7.2.1.6
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1.6.1
Faktorisiere aus heraus.
Schritt 7.2.1.6.2
Faktorisiere aus heraus.
Schritt 7.2.1.6.3
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.6.4
Forme den Ausdruck um.
Schritt 7.2.1.7
Kombiniere und .
Schritt 7.2.1.8
Mutltipliziere mit .
Schritt 7.2.1.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.1.10
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 7.2.1.10.1
Wende die Produktregel auf an.
Schritt 7.2.1.10.2
Wende die Produktregel auf an.
Schritt 7.2.1.11
Potenziere mit .
Schritt 7.2.1.12
Potenziere mit .
Schritt 7.2.1.13
Potenziere mit .
Schritt 7.2.1.14
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1.14.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 7.2.1.14.2
Faktorisiere aus heraus.
Schritt 7.2.1.14.3
Faktorisiere aus heraus.
Schritt 7.2.1.14.4
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.14.5
Forme den Ausdruck um.
Schritt 7.2.1.15
Kombiniere und .
Schritt 7.2.1.16
Mutltipliziere mit .
Schritt 7.2.1.17
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 7.2.1.17.1
Wende die Produktregel auf an.
Schritt 7.2.1.17.2
Wende die Produktregel auf an.
Schritt 7.2.1.18
Potenziere mit .
Schritt 7.2.1.19
Mutltipliziere mit .
Schritt 7.2.1.20
Potenziere mit .
Schritt 7.2.1.21
Potenziere mit .
Schritt 7.2.1.22
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1.22.1
Faktorisiere aus heraus.
Schritt 7.2.1.22.2
Faktorisiere aus heraus.
Schritt 7.2.1.22.3
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.22.4
Forme den Ausdruck um.
Schritt 7.2.1.23
Kombiniere und .
Schritt 7.2.1.24
Mutltipliziere mit .
Schritt 7.2.1.25
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.2
Kombiniere Brüche.
Schritt 7.2.2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.2.2
Subtrahiere von .
Schritt 7.2.3
Vereinfache jeden Term.
Schritt 7.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.3.2
Dividiere durch .
Schritt 7.2.4
Addiere und .
Schritt 7.2.5
Die endgültige Lösung ist .
Schritt 7.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache jeden Term.
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Potenziere mit .
Schritt 8.2.1.4
Mutltipliziere mit .
Schritt 8.2.1.5
Potenziere mit .
Schritt 8.2.1.6
Mutltipliziere mit .
Schritt 8.2.2
Vereinfache durch Substrahieren von Zahlen.
Schritt 8.2.2.1
Subtrahiere von .
Schritt 8.2.2.2
Subtrahiere von .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 9
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus nach Minus oder von Minus nach Plus ändert. Es gibt keine Punkte auf dem Graph, die diese Bedingungen erfüllen.
Keine Wendepunkte