Analysis Beispiele

Ermittle die Stammfunktion f(x)=6/(5 Quadratwurzel von 4x+2)+1/(cos(5x)^2)
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Wandle von nach um.
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.3.3
Mutltipliziere mit .
Schritt 6.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.1.4.2
Addiere und .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Bringe auf die linke Seite von .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Mutltipliziere mit .
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.1.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.3.1
Faktorisiere aus heraus.
Schritt 9.1.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.3.2.1
Faktorisiere aus heraus.
Schritt 9.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.1.3.2.3
Forme den Ausdruck um.
Schritt 9.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Benutze , um als neu zu schreiben.
Schritt 9.2.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 9.2.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2.3.2
Kombiniere und .
Schritt 9.2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Differenziere .
Schritt 11.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.1.4
Mutltipliziere mit .
Schritt 11.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 12
Kombiniere und .
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 15
Vereinfache.
Schritt 16
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Ersetze alle durch .
Schritt 16.2
Ersetze alle durch .
Schritt 17
Stelle die Terme um.
Schritt 18
Die Lösung ist die Stammfunktion der Funktion .