Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 2.3
Kombiniere und .
Schritt 2.4
Kürze den gemeinsamen Teiler von und .
Schritt 2.4.1
Faktorisiere aus heraus.
Schritt 2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 2.4.2.1
Faktorisiere aus heraus.
Schritt 2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.3
Forme den Ausdruck um.
Schritt 2.4.2.4
Dividiere durch .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Schritt 4.1
Kombiniere und .
Schritt 4.2
Kürze den gemeinsamen Teiler von und .
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.2.1
Faktorisiere aus heraus.
Schritt 4.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.3
Forme den Ausdruck um.
Schritt 4.2.2.4
Dividiere durch .
Schritt 4.3
Mutltipliziere mit .
Schritt 5
Schritt 5.1
Es sei . Ermittle .
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Schritt 8.1
Kombiniere und .
Schritt 8.2
Kürze den gemeinsamen Teiler von und .
Schritt 8.2.1
Faktorisiere aus heraus.
Schritt 8.2.2
Kürze die gemeinsamen Faktoren.
Schritt 8.2.2.1
Faktorisiere aus heraus.
Schritt 8.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.3
Forme den Ausdruck um.
Schritt 8.2.2.4
Dividiere durch .
Schritt 9
Das Integral von nach ist .
Schritt 10
Schreibe als um.
Schritt 11
Ersetze alle durch .