Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Der natürliche Logarithmus von ist .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 1.5.2
Der natürliche Logarithmus von ist .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Das Integral von nach ist .
Schritt 3
Berechne bei und .
Schritt 4
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 5
Schritt 5.1
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 5.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.3
Dividiere durch .
Schritt 6
Der natürliche Logarithmus von ist .