Analysis Beispiele

Berechne den Grenzwert Limes von (x^3-x+7)/( Quadratwurzel von 9x^6+1) für x gegen infinity
Schritt 1
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Schritt 2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2
Dividiere durch .
Schritt 2.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 6
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 6.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 7
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 8
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Mutltipliziere mit .
Schritt 8.1.2
Mutltipliziere mit .
Schritt 8.1.3
Addiere und .
Schritt 8.1.4
Addiere und .
Schritt 8.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Addiere und .
Schritt 8.2.2
Schreibe als um.
Schritt 8.2.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: