Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.2
Addiere und .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Mutltipliziere mit .
Schritt 1.5.2
Addiere und .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Benutze , um als neu zu schreiben.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Schritt 6.1
Berechne bei und .
Schritt 6.2
Vereinfache.
Schritt 6.2.1
Kombiniere und .
Schritt 6.2.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6.2.3
Mutltipliziere mit .
Schritt 7
Schritt 7.1
Wende das Distributivgesetz an.
Schritt 7.2
Kombinieren.
Schritt 7.3
Kürze den gemeinsamen Faktor von .
Schritt 7.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 7.3.2
Faktorisiere aus heraus.
Schritt 7.3.3
Kürze den gemeinsamen Faktor.
Schritt 7.3.4
Forme den Ausdruck um.
Schritt 7.4
Vereinfache jeden Term.
Schritt 7.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.4.2
Forme den Ausdruck um.
Schritt 7.4.3
Mutltipliziere mit .
Schritt 7.4.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 9