Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Schritt 4.1.1
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor von zweiter Ordnung ist, sind Terme im Zähler erforderlich. Die Anzahl der erforderlichen Terme im Zähler ist immer gleich der Ordnung des Faktors im Nenner.
Schritt 4.1.2
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 4.1.3
Kürze den gemeinsamen Faktor von .
Schritt 4.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.3.2
Forme den Ausdruck um.
Schritt 4.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.4.2
Forme den Ausdruck um.
Schritt 4.1.5
Vereinfache jeden Term.
Schritt 4.1.5.1
Kürze den gemeinsamen Faktor von .
Schritt 4.1.5.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.5.1.2
Dividiere durch .
Schritt 4.1.5.2
Wende das Distributivgesetz an.
Schritt 4.1.5.3
Mutltipliziere mit .
Schritt 4.1.5.4
Kürze den gemeinsamen Faktor von .
Schritt 4.1.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.5.4.2
Dividiere durch .
Schritt 4.1.5.5
Wende das Distributivgesetz an.
Schritt 4.1.5.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.1.5.6.1
Bewege .
Schritt 4.1.5.6.2
Mutltipliziere mit .
Schritt 4.1.6
Bewege .
Schritt 4.2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Schritt 4.2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 4.2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 4.2.3
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 4.2.4
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 4.3
Löse das Gleichungssystem.
Schritt 4.3.1
Schreibe die Gleichung als um.
Schritt 4.3.2
Schreibe die Gleichung als um.
Schritt 4.3.3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 4.3.3.1
Ersetze alle in durch .
Schritt 4.3.3.2
Vereinfache die rechte Seite.
Schritt 4.3.3.2.1
Entferne die Klammern.
Schritt 4.3.4
Löse in nach auf.
Schritt 4.3.4.1
Schreibe die Gleichung als um.
Schritt 4.3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.5
Löse das Gleichungssystem.
Schritt 4.3.6
Liste alle Lösungen auf.
Schritt 4.4
Ersetze jeden Teilbruchkoeffizienten in durch die Werte, die für , und ermittelt wurden.
Schritt 4.5
Vereinfache.
Schritt 4.5.1
Entferne die Klammern.
Schritt 4.5.2
Vereinfache den Zähler.
Schritt 4.5.2.1
Schreibe als um.
Schritt 4.5.2.2
Addiere und .
Schritt 4.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Das Integral von nach ist .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Schritt 8.1
Es sei . Ermittle .
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.1.5
Addiere und .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Bringe auf die linke Seite von .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Das Integral von nach ist .
Schritt 12
Vereinfache.
Schritt 13
Ersetze alle durch .
Schritt 14
Die Lösung ist die Stammfunktion der Funktion .