Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die zweite Ableitung.
Schritt 2.1.1
Bestimme die erste Ableitung.
Schritt 2.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.1.2
Berechne .
Schritt 2.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.3
Kombiniere und .
Schritt 2.1.1.2.4
Mutltipliziere mit .
Schritt 2.1.1.2.5
Kombiniere und .
Schritt 2.1.1.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.1.2.6.1
Faktorisiere aus heraus.
Schritt 2.1.1.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.1.1.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2.6.2.3
Forme den Ausdruck um.
Schritt 2.1.1.3
Berechne .
Schritt 2.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.3.3
Mutltipliziere mit .
Schritt 2.1.1.4
Berechne .
Schritt 2.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.4.3
Mutltipliziere mit .
Schritt 2.1.2
Bestimme die zweite Ableitung.
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Berechne .
Schritt 2.1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.2.3
Kombiniere und .
Schritt 2.1.2.2.4
Mutltipliziere mit .
Schritt 2.1.2.2.5
Kombiniere und .
Schritt 2.1.2.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.2.6.1
Faktorisiere aus heraus.
Schritt 2.1.2.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.2.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.2.6.2.3
Forme den Ausdruck um.
Schritt 2.1.2.2.6.2.4
Dividiere durch .
Schritt 2.1.2.3
Berechne .
Schritt 2.1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3.3
Mutltipliziere mit .
Schritt 2.1.2.4
Berechne .
Schritt 2.1.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.4.3
Mutltipliziere mit .
Schritt 2.1.3
Die zweite Ableitung von nach ist .
Schritt 2.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Schritt 2.2.1
Setze die zweite Ableitung gleich .
Schritt 2.2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 2.2.2.2.1
Schreibe als um.
Schritt 2.2.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.2.2.3
Schreibe das Polynom neu.
Schritt 2.2.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.2.4
Setze gleich .
Schritt 2.2.5
Setze gleich und löse nach auf.
Schritt 2.2.5.1
Setze gleich .
Schritt 2.2.5.2
Löse nach auf.
Schritt 2.2.5.2.1
Setze gleich .
Schritt 2.2.5.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Potenziere mit .
Schritt 5.2.1.4
Mutltipliziere mit .
Schritt 5.2.1.5
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Substrahieren von Zahlen.
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Subtrahiere von .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Potenziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.1.5
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Potenziere mit .
Schritt 7.2.1.4
Mutltipliziere mit .
Schritt 7.2.1.5
Mutltipliziere mit .
Schritt 7.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 7.2.2.1
Subtrahiere von .
Schritt 7.2.2.2
Addiere und .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 8
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konkav im Intervall , da negativ ist
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 9