Analysis Beispiele

미분 구하기 - d/dx y=x+4 Quadratwurzel von x+2
Schritt 1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.8
Kombiniere und .
Schritt 2.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.10
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.10.1
Mutltipliziere mit .
Schritt 2.10.2
Subtrahiere von .
Schritt 2.11
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.12
Addiere und .
Schritt 2.13
Kombiniere und .
Schritt 2.14
Mutltipliziere mit .
Schritt 2.15
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.16
Kombiniere und .
Schritt 2.17
Faktorisiere aus heraus.
Schritt 2.18
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.18.1
Faktorisiere aus heraus.
Schritt 2.18.2
Kürze den gemeinsamen Faktor.
Schritt 2.18.3
Forme den Ausdruck um.