Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Die Ableitung von nach ist .
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Schreibe als um.
Schritt 2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.5
Mutltipliziere mit .
Schritt 2.6
Vereinfache.
Schritt 2.6.1
Wende das Distributivgesetz an.
Schritt 2.6.2
Stelle die Terme um.
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Schreibe als um.
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Addiere und .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Vereinfache die linke Seite.
Schritt 5.1.1
Stelle die Faktoren in um.
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Addiere zu beiden Seiten der Gleichung.
Schritt 5.4
Faktorisiere aus heraus.
Schritt 5.4.1
Faktorisiere aus heraus.
Schritt 5.4.2
Faktorisiere aus heraus.
Schritt 5.4.3
Faktorisiere aus heraus.
Schritt 5.5
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.5.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2
Vereinfache die linke Seite.
Schritt 5.5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.1.2
Dividiere durch .
Schritt 5.5.3
Vereinfache die rechte Seite.
Schritt 5.5.3.1
Faktorisiere aus heraus.
Schritt 5.5.3.2
Schreibe als um.
Schritt 5.5.3.3
Faktorisiere aus heraus.
Schritt 5.5.3.4
Stelle die Minuszeichen um.
Schritt 5.5.3.4.1
Schreibe als um.
Schritt 5.5.3.4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .