Analysis Beispiele

dx/dy 구하기 x+2xy-y^2=2
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Schreibe als um.
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4
Schreibe als um.
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.3
Mutltipliziere mit .
Schritt 2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Wende das Distributivgesetz an.
Schritt 2.5.2
Entferne unnötige Klammern.
Schritt 2.5.3
Stelle die Terme um.
Schritt 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Potenziere mit .
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.2.4
Faktorisiere aus heraus.
Schritt 5.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2
Dividiere durch .
Schritt 5.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.2.2
Faktorisiere aus heraus.
Schritt 5.3.3.2.3
Faktorisiere aus heraus.
Schritt 5.3.3.3
Faktorisiere aus heraus.
Schritt 5.3.3.4
Faktorisiere aus heraus.
Schritt 5.3.3.5
Faktorisiere aus heraus.
Schritt 5.3.3.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.6.1
Schreibe als um.
Schritt 5.3.3.6.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .