Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Mutltipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Kombiniere und .
Schritt 2.6
Kürze den gemeinsamen Teiler von und .
Schritt 2.6.1
Faktorisiere aus heraus.
Schritt 2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 2.6.2.1
Faktorisiere aus heraus.
Schritt 2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.3
Forme den Ausdruck um.
Schritt 2.6.2.4
Dividiere durch .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Kombiniere und .
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Vereinfache den Zähler.
Schritt 3.6.1
Mutltipliziere mit .
Schritt 3.6.2
Subtrahiere von .
Schritt 3.7
Kombiniere und .
Schritt 3.8
Kombiniere und .
Schritt 3.9
Mutltipliziere mit .
Schritt 3.10
Faktorisiere aus heraus.
Schritt 3.11
Kürze die gemeinsamen Faktoren.
Schritt 3.11.1
Faktorisiere aus heraus.
Schritt 3.11.2
Kürze den gemeinsamen Faktor.
Schritt 3.11.3
Forme den Ausdruck um.
Schritt 3.11.4
Dividiere durch .
Schritt 4
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Mutltipliziere mit .