Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Kombiniere und .
Schritt 1.2
Bringe auf die linke Seite von .
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Es sei . Ermittle .
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Schritt 6.1
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Bringe auf die linke Seite von .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Mutltipliziere mit .
Schritt 9
Das Integral von nach ist .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Schritt 11.1
Es sei . Ermittle .
Schritt 11.1.1
Differenziere .
Schritt 11.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.1.4
Mutltipliziere mit .
Schritt 11.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 12
Kombiniere und .
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Das Integral von nach ist .
Schritt 15
Schritt 15.1
Vereinfache.
Schritt 15.2
Kombiniere und .
Schritt 16
Schritt 16.1
Ersetze alle durch .
Schritt 16.2
Ersetze alle durch .
Schritt 17
Stelle die Terme um.