Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.1.1
Faktorisiere aus heraus.
Schritt 5.1.1.2
Faktorisiere aus heraus.
Schritt 5.1.1.3
Faktorisiere aus heraus.
Schritt 5.1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 5.1.3
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 5.1.4
Kürze den gemeinsamen Faktor von .
Schritt 5.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.4.2
Forme den Ausdruck um.
Schritt 5.1.5
Kürze den gemeinsamen Faktor von .
Schritt 5.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.5.2
Forme den Ausdruck um.
Schritt 5.1.6
Vereinfache jeden Term.
Schritt 5.1.6.1
Kürze den gemeinsamen Faktor von .
Schritt 5.1.6.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.6.1.2
Dividiere durch .
Schritt 5.1.6.2
Wende das Distributivgesetz an.
Schritt 5.1.6.3
Bringe auf die linke Seite von .
Schritt 5.1.6.4
Kürze den gemeinsamen Faktor von .
Schritt 5.1.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.6.4.2
Dividiere durch .
Schritt 5.1.7
Bewege .
Schritt 5.2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Schritt 5.2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 5.2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 5.2.3
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 5.3
Löse das Gleichungssystem.
Schritt 5.3.1
Löse in nach auf.
Schritt 5.3.1.1
Schreibe die Gleichung als um.
Schritt 5.3.1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.1.2.1
Teile jeden Ausdruck in durch .
Schritt 5.3.1.2.2
Vereinfache die linke Seite.
Schritt 5.3.1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.2.2.1.2
Dividiere durch .
Schritt 5.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 5.3.2.1
Ersetze alle in durch .
Schritt 5.3.2.2
Vereinfache die rechte Seite.
Schritt 5.3.2.2.1
Entferne die Klammern.
Schritt 5.3.3
Löse in nach auf.
Schritt 5.3.3.1
Schreibe die Gleichung als um.
Schritt 5.3.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3.4
Löse das Gleichungssystem.
Schritt 5.3.5
Liste alle Lösungen auf.
Schritt 5.4
Ersetze jeden der Teilbruchkoeffizienten in durch die Werte, die für und ermittelt wurden.
Schritt 5.5
Vereinfache.
Schritt 5.5.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.5.2
Mutltipliziere mit .
Schritt 5.5.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.5.4
Mutltipliziere mit .
Schritt 5.5.5
Bringe auf die linke Seite von .
Schritt 6
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Das Integral von nach ist .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Schritt 11.1
Es sei . Ermittle .
Schritt 11.1.1
Differenziere .
Schritt 11.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 11.1.5
Addiere und .
Schritt 11.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 12
Das Integral von nach ist .
Schritt 13
Vereinfache.
Schritt 14
Ersetze alle durch .
Schritt 15
Schritt 15.1
Vereinfache jeden Term.
Schritt 15.1.1
Kombiniere und .
Schritt 15.1.2
Kombiniere und .
Schritt 15.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 15.3
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 15.4
Kürze den gemeinsamen Faktor von .
Schritt 15.4.1
Kürze den gemeinsamen Faktor.
Schritt 15.4.2
Forme den Ausdruck um.
Schritt 16
Die Lösung ist die Stammfunktion der Funktion .