Analysis Beispiele

Berechne das Integral Integral über (1-x)/(x^2) nach x
Schritt 1
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 2
Multipliziere .
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Mutltipliziere mit .
Schritt 3.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Bewege .
Schritt 3.2.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Potenziere mit .
Schritt 3.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.3
Addiere und .
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Das Integral von nach ist .
Schritt 8
Vereinfache.