Analysis Beispiele

Ermittle die Wendepunkte 3/10x^5+x^4+x^3
Schritt 1
Schreibe als Funktion.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Kombiniere und .
Schritt 2.1.2.4
Mutltipliziere mit .
Schritt 2.1.2.5
Kombiniere und .
Schritt 2.1.2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.6.1
Faktorisiere aus heraus.
Schritt 2.1.2.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.6.2.3
Forme den Ausdruck um.
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.3
Kombiniere und .
Schritt 2.2.2.4
Mutltipliziere mit .
Schritt 2.2.2.5
Kombiniere und .
Schritt 2.2.2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.6.1
Faktorisiere aus heraus.
Schritt 2.2.2.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.6.2.3
Forme den Ausdruck um.
Schritt 2.2.2.6.2.4
Dividiere durch .
Schritt 2.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3
Mutltipliziere mit .
Schritt 2.2.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4.3
Mutltipliziere mit .
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.2
Faktorisiere aus heraus.
Schritt 3.2.1.3
Faktorisiere aus heraus.
Schritt 3.2.1.4
Faktorisiere aus heraus.
Schritt 3.2.1.5
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Schreibe als um.
Schritt 3.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.2.2.3
Schreibe das Polynom neu.
Schritt 3.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich .
Schritt 3.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Setze gleich .
Schritt 3.5.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Bestimme die Punkte, an denen die zweite Ableitung gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.2
Mutltipliziere mit .
Schritt 4.1.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Addiere und .
Schritt 4.1.2.2.2
Addiere und .
Schritt 4.1.2.3
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.3
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Potenziere mit .
Schritt 4.3.2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.2.1
Kombiniere und .
Schritt 4.3.2.1.2.2
Mutltipliziere mit .
Schritt 4.3.2.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.2.1.4
Potenziere mit .
Schritt 4.3.2.1.5
Potenziere mit .
Schritt 4.3.2.2
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.3.2.2.2
Mutltipliziere mit .
Schritt 4.3.2.2.3
Mutltipliziere mit .
Schritt 4.3.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.3.2.2.5
Mutltipliziere mit .
Schritt 4.3.2.2.6
Mutltipliziere mit .
Schritt 4.3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.4.1
Mutltipliziere mit .
Schritt 4.3.2.4.2
Addiere und .
Schritt 4.3.2.4.3
Subtrahiere von .
Schritt 4.3.2.4.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.2.5
Die endgültige Lösung ist .
Schritt 4.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Potenziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.1.5
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Addiere und .
Schritt 6.2.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1.1
Wende die Produktregel auf an.
Schritt 7.2.1.1.2
Wende die Produktregel auf an.
Schritt 7.2.1.2
Potenziere mit .
Schritt 7.2.1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.1.4
Potenziere mit .
Schritt 7.2.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.5.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 7.2.1.5.2
Faktorisiere aus heraus.
Schritt 7.2.1.5.3
Faktorisiere aus heraus.
Schritt 7.2.1.5.4
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.5.5
Forme den Ausdruck um.
Schritt 7.2.1.6
Kombiniere und .
Schritt 7.2.1.7
Mutltipliziere mit .
Schritt 7.2.1.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.1.9
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.9.1
Wende die Produktregel auf an.
Schritt 7.2.1.9.2
Wende die Produktregel auf an.
Schritt 7.2.1.10
Potenziere mit .
Schritt 7.2.1.11
Mutltipliziere mit .
Schritt 7.2.1.12
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.1.13
Potenziere mit .
Schritt 7.2.1.14
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.14.1
Faktorisiere aus heraus.
Schritt 7.2.1.14.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.14.3
Forme den Ausdruck um.
Schritt 7.2.1.15
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.15.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 7.2.1.15.2
Faktorisiere aus heraus.
Schritt 7.2.1.15.3
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.15.4
Forme den Ausdruck um.
Schritt 7.2.1.16
Mutltipliziere mit .
Schritt 7.2.2
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 7.2.2.2
Mutltipliziere mit .
Schritt 7.2.2.3
Mutltipliziere mit .
Schritt 7.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 7.2.2.5
Mutltipliziere mit .
Schritt 7.2.2.6
Mutltipliziere mit .
Schritt 7.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.4.1
Mutltipliziere mit .
Schritt 7.2.4.2
Mutltipliziere mit .
Schritt 7.2.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.5.1
Addiere und .
Schritt 7.2.5.2
Subtrahiere von .
Schritt 7.2.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.6
Die endgültige Lösung ist .
Schritt 7.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Potenziere mit .
Schritt 8.2.1.4
Mutltipliziere mit .
Schritt 8.2.1.5
Mutltipliziere mit .
Schritt 8.2.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Addiere und .
Schritt 8.2.2.2
Addiere und .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus zu Minus oder von Minus zu Plus ändert. In diesem Fall ist der Wendepunkt .
Schritt 10