Analysis Beispiele

미분 구하기 - d/dx (x^2+1)sin(3x-1)
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Mutltipliziere mit .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Addiere und .
Schritt 3.6.2
Bringe auf die linke Seite von .
Schritt 3.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.10
Addiere und .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Stelle die Terme um.