Analysis Beispiele

Berechne das Integral pi Integral von 0 bis 6 über (-x+6)^2 nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.2
Addiere und .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Mutltipliziere mit .
Schritt 1.5.2
Addiere und .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Kombiniere und .
Schritt 5
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Berechne bei und .
Schritt 5.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.2.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.3
Forme den Ausdruck um.
Schritt 5.2.2.2.4
Dividiere durch .
Schritt 5.2.3
Potenziere mit .
Schritt 5.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Faktorisiere aus heraus.
Schritt 5.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.2.1
Faktorisiere aus heraus.
Schritt 5.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.2.3
Forme den Ausdruck um.
Schritt 5.2.4.2.4
Dividiere durch .
Schritt 5.2.5
Mutltipliziere mit .
Schritt 5.2.6
Subtrahiere von .
Schritt 5.2.7
Mutltipliziere mit .
Schritt 5.2.8
Bringe auf die linke Seite von .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 7